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1.  Introduction 

A method for generating a normal random variable in terms of uniform 

random variables will be described.  The method is based on representing 

a density function as a mixture of simpler densities, as outlined in [l]. 

It is quite fast and requires little storage (60 constants).  It is not 

quite as fast as the method of [2], but it is simpler, with less chance 

for prospective users being set adrift in a sea of details. 

We will fashion the procedure with use on a computer with numbers 

having 35 binary digits (bits) in mind.  The details may be modified for 

numbers of different lengths or for decimal computers. 

The normal random variable x is generated in terms of Independent 

uniform random variables u1,u„,... .  Roughly, the procedure is this: 

we put x = -iki with frequency 35%;  x = -g- + -gu, 2A%;    x = 1 + jga,  13%; 

x = 3/2  +  -gu, 5%',    and x = 2 + -gu,  with frequency about 1%.       Thus 

with probability about .8 we put x = a + -gu, the first 9 bits of u, 

being used to choose a from among  C, l/2, 1, 3/2, 2 and the 

remaining 26 bits of u-,  used to form -gu. 

Of the remaining 20% we use the modified rejection technique given 

in [3] with frequency 19%  and the other 1%  is devoted to the tall.  The 

modified rejection technique Is applied to one of regions 6-10 above 

the rectangles in Fig. 1, while rectangles 1-5 provide the representations 

x = 0 + -gu, -J- + -gu,  etc. We use the polar representation of a random 

normal point to dispose of the tail. 

• 
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Fig.   1 



The procedure has, in theory, unlimited accuracy; in practice, its 

accuracy is limited by the capabilities of the machine in single 

precision floating point. 

f(x)    =    ~ e~^,      x > 0. 

2.       The Rectangles 

Let    f   be the absolute normal density, 

2 
  e  ^ 

We generate    x    with density    f,    attaching a random    +    at some convenient 

point in the program.    We write    f   as a mixture of 11 densities: 

11 
f(x)    =      2    P.g. (x). 

i=l i"i 

Fig. 1 shows how the terms in the mixture are stacked to form f. 

The 5 rectangles provide the fast part of the program; g., , ... ,g^ 

being rectangles with base -g-, an x with such a density may be found 

by putting x = a + -gu.  For example, region 1 of Fig. 1 provides the 

representation x = 0 + -gu,  and this should be used with frequency equal 

to the area of region 1,  p = .352065326764.299.  But it is wasteful to 

test u-, < P-i  in its full form, as this will require all 35 bits of u, ; 

much better is to use only, say, 9 bits of u,  to test u, < p,  where 

p.  is the nearest we can get to p.. using 9 bits, p. = 180/512 = .3515625, 

then we may use the last 26 bits of u,  to form -^u and put x = -Ju. 

Later, with probability p.. - P-, » we will put x = gU«, using a 

completely new uniform number u«.  We then will get by most of the time 

with a single uniform number un .  Each of the probabilities P-, »P^tPiiP, tVr 
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is broken up in this way;  the numerical values appear in the steps  of 

the program and in the summary of constants. 

3.       The "Nearly Linear" Method 

We illustrate the nearly linear method with region 9  of Pig.  1. 

It represents  the term    Pqgq    in the mixture,  so we must, with 

probability    p_ =  .034-123172128170,     generate a random variable with 

density    g,,.       This density is drawn in Fig.   2.     Our method is  to enclose 

the area under    g    in the trapezoid    ADEF.       The slope of    CG    and    DE 

is  -8.     We choose a point (z,y) uniformly from the trapezoid and set 

x = z    if   y < g(z),    but choose a new point (z,y)  if not.    We test to 

see if the point  (z,y)   is in  triangle    ACG    (y < const. -8z),  hoping  to 

avoid  testing    y < g(z).      If that test is necessary, we  take advantage 

of the exponential content of    g,    writing 

i2 ,-9/8 1/2 
g(z)     =    _JL> [e-^ . e-2]     =    2e^[e-i<z^9A)_e-7/8]# 

P9 ^2TT p9 ^2TT 

Then  the test    y < g(z)     hinges  on whether this infinite sura is positive 

or negative: 

t2       t-"       t^ 
^ -s + * -2T+3T"ZT+ "•• 

with    r = p9s/^72 e9'8,    s = 1  - e"7/8,     t = -^z + 3/2) (z   - 3/2), 

0 < t < 7/8.       This is  an alternating series  that converges  rather 

quickly, and its  sum is  negative if and  only if two successive partial 

sums  are negative;  positive if and  only if two successive partial sums 

are positive.    We should average only a  few multiplications  in order to 



decide y < g(z) with "unlimited" accuracy. Another advantage Is that 

the structure of the test for gQ    is the same as that for the other g's, 

only r, s, and t changing. 

The point (z,y) in the trapezoid of Fig.   2 may be produced quite 

fast, putting 

z = ■§-min(up,u_) -♦- <-5, 

y = d + 4max(u2,u.J 

(choosing from triangle BDE)  with probability    rrr   and putting 

z    =    iu 2' 

y    =    du. 

(choosing from ABEF)  with probability 
2+d * 

If d is small we will 

avoid conventional multiplication most of the time, and by properly 

choosing d we will need only a few bits of u,  to choose between the 

two methods for generating (2,y), so that the remaining bits of u,  may 

be used to form u_ and u_. 

For example,  pQ = .03-412317212.8170.  We let p0 = 17/512 = .033203125, 
7 7 

then generate x with density gq with probability pq.  In the course 

of the program, the test for this contingency is ^r— < u-, <  rr^— . 

2   IZ, 
If u,  is in this range, then by making -ZTT = zf: ,   we may test 

u-, < ^—rTp—> keeping the last 26 bits of u,  available for forming 

u? and u_.  This makes d = 3/7 = .-42857...  whereas the smallest 

possible value for d is d = .4-27... .  The loss is small, and the gain 

from not having to generate new tu and u_ is great.  We must generate x 



f. 

from density gQ with probability PQ - p0 later on, using new u0 
7 7      7 ~ *- 

and u_, b\ 

negligible. 

and u-, but the average time loss for this compensating step is 

4..  The Tail 

We need x conditioned by  |x| > 2.5.  Consider the plane of points 

(x, jX )  with x,  and x5 independent standard normal. 

► x, 

We want a point (x. ,x_)   outside the square,   then one  of the coordinates 

will serve as     x.       We use the polar representation  (p,6)   to choose points 

outside  the circle until we get one outside  the square,  then change to 

rectangular coordinates   (x  ,x ). 

The exterior of the circle has measure   .04-4.,  the exterior of the 

square,   .025.       The  ratio of  the  two is  about   .57 so  that  57%  of the  time 

a  point  lying   outside   the circle will  lie   outside  the  square.     If (x.^ »xp) 

lies   outside  the square,   only once in  150  times will both   Ix, |   and   |x9| 

be > 2.5,  so it probably isn't worth the  trouble to store  the  extra one 
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for future use, as this would mean that each time the tall was encountered 

in the program, the request for a possible stored value of x would almost 

always be denied. 

It is elementary to verify that putting 

^ 
= v. 

X2 = v2 

(2$ A + 2w\ 
2 x 2 ;' 

Vl + V2 / 
i 

(?5A + 2w\ ^ 
Vl + V2 / ' 

with w exponential and ^,V- uniform on (-1,1) and conditioned by 

2   2 v, + v. < i, will provide a point (x^.x.) Outside the circle with the 

appropriate distribution. 

5.  Outline of a Program 

We give a series of steps outlining a program based on the above 

procedure, assuming we have a subroutine which, when called for, will 

generate a new uniform number u in terms of the current uj  for 

k 35 
example, by putting: new u = 2 u +u + 1 (mod 2 ),  as suggested by 

Rotenberg [5]. 



1.    If ISO 
0 < u..  < rrj   put    x = -^u,    with    -g-u    formed from bits 10-35 of   u, . 

•g- + -gu, vdth ^u formed from bits 10-35 of 

3.      If    IJI^ < HI   put    x = 1 + i 

, --. 180     y y      303 1,1 
*      If    512 ^ ui < 512    P"*    x = i + "5 

ur 

V 

■gu, with -gu formed from bits 10-35 of u, . 

U-      If    HI < ^ < HI   put    x = 1.5 + M with ^u formed  from bits 10-35 of 

5.      If    ||| < ^ < |2|   put    x = 2.0 + ^u, with ^u formed  from bits 10-35 of u^^. 

fg<Ui<g| ^ J=6, 
/QQ 
|j|-    pit    j = 10.       Test 

z = a.  + -g- mln(ii2,u_)     and    y = d .   +4- max (u„,u_);    if 

if    ^22 <u    <^9 
512 ^ ul ^ 512 

and 

u,   < q.,    if yes,  form 

no,   form 

z = a^.  + ib2,    y = d.u^.       In 

bits  10-22 and    u 

either case,    u-    is  formed from 

put 

u     fi-om bits  23-35  of   u,.     [K] If    y < e^   - 

x = 

.   - 8z, 

zj    if not,  let    t = -^z + a.)(z  - a.)     and  form terms  of 
J J 

the sequence 

t2 

rJy-SJ'   rJy-SJ+t'  rjy-SJ+t- 
t ^4- t f      t^ 
21'   rjy-Sj+t-2T + 3T' 

Lve until  two successive terms have  the same sign.     If two successii 

terms are negative,   put    x =  z,     if two successive  terms  are posi- 

tive,  go to    H. 

7.       If    HI < ^ <  .980619788956091    choose    i     from    1,2,...,5    wi 

probability    p.   - p. ,    generate a uniform number    u,    and put 

x - -g{i-l)   + ^u^. 

th 



9. 

H. 

10 

8.       If     .980619788956091 1 u,  < .987580669348-U8    choose    j     from among 

6,7,8,9,10    with probability    p.   - p.     and go to    H. 
J J 

If    .9875806693^8U8 < ^ < 1,    form 

2 +    2   )    > 
'1 2 

= v   /25/4 + 2vA v2 V     2 ^    2   i    ' 

where    w    has   the exponential distribution and    v., ,v?    are uniform 

on   (-1,1),  conditioned by    v,   + v? < 1.       Test     Ix^ |   > 2,5',    if 

yes,  put    x V If no,  test     |x„|   > 2.5;     if yes,   put    x = x?; 

if no, generate a new pair    x. ,x      and  try again. 

Generate  a new uniform number    u.       Test    u < b.,     if yes,  let 

z = a.  + g- inin(u2,uj ,    y d.  + ^ max (u_,u_);     if no,   let 

z = a.  +  pU„,     y = d,u_    where    u„    and    u0    are formed  from the 
J       ^  2'     ^ j  3 2 3 

first and  last  parts   of a new uniform number generated  from   u. 

Now go to   [K]   of step 6. 

6. Remarks 

With probability • rr^--   .79    we will use  the representation 

x = a + -gu    of steps  1-5,  and  this  is   the principal reason for a fast 

95 m program.     However,   even when,  with  frequency    TVö    
or about 19%,    we 

require step 6,   the   time  loss  is not crushing,  for most of the time we 

will get  through step 6 without using a single conventional multipli- 

cation and will require only  one uniform number    u.. 
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It is in trying  to avoid  the use of more than one uniform number 

in step 6 that we make our only compromise with accuracy,  for we use 

only 13 bits  to represent numbers on an interval of length    -g-,      A 

program based  on the  outline above can be described as  being as accurate 

as  the single precision capacity of the machine,   except  that with 

probability    ;r    the value of    x    may differ by about    2~ from the 

value  that should be delivered.    Any nuts wanting accuracy greater than 

this  can call up a new uniform number at  that point,  with a loss   of 

15 perhaps 15  cycles,  or a net  loss  of about    -?- - 3    cycles  in the average 

running time of the program. 

Step 7 corrects  for our inability to handle regions  1 to  5 using 

only 9 bits,  and  step 8 does   the same for regions  6 to 10.     Step 9 

provides an    x    from the tail.     Note  that in step 9 a signed value of 

x    is   returned,  whereas  in the  other steps  a positive    x    is  returned 

and a  random    +    must be assigned at some convenient point.     The method 

for doing  this  is not critical in steps  7 or 8,  but in the first 6 steps, 

particularly steps 1-5,   the method should be chosen so that time is not 

wasted   in  this  assignment. 

Step 9  requires  an exponential variable    w.       The  ease with which 

w    can be produced is   probably more important than saving  time here, 

since step 9 provides   only one    x    in a hundred.     If a logarithm sub- 

routine is available,     w = - In u    will serve,   or the method in   [4J 

may be used. 

• 
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SUMMARY OF CONSTANTS 

i 

6 
7 
8 
9 
10 

0J aj      ej        qj Pj aj 

12/15 1/2 3.0380 ^89/512 15/512=.029296875 0 
28/29 1/lA 7.8099 4-32/512 29/512=. 0566^0625 l/2 
25/27 4/25 11.930 458/512 27/512=. 05273-^375 1 
14-/17 3/7 15.850 ^74-/512 17/512=. 033203125 3/2 
5/7 4-/3 19.780 497/512 7/512=. 013671875 2 

6 
7 

10 

.030859595783727 

.057793845069917 

.054178509659306 

.034123172128170 

.015552632751237 

P.-P. 

.001562720783727 

.001153220069917 

.001444134659306 

.000920047128170 

.001880757751237 

J' 

.038676767667587 

.082078297231197 

.111952612794322 

.131731800427316 

.144029953116673 

s . 
J 

.117503097415405 

.312710721209028 

.464738571481000 

.583137980321492 

.675347532641650 

1 .352065326764299 
2 .241970724519143 
3 .129517595665892 
4 .053990966513188 
5 .017528300493569 

180/512=.3515625 
123/512=.240234375 
66/512=.12890625 
27/512=.052734375 
8/512=.015625 

pi-pi 

.000502826764299 

.001736349519143 

.000611345665892 

.001256591513188 

.001903300493569 
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